
Section 5.4: 

Rank of a Matrix



Ideas in this section… 

Given an  𝑚 × 𝑛  matrix  A…

• Definition of row space and column space of  A

• Definition of null space and image space of  A

• Definition of the eigenspace of  A

• col(A) = im(A)  

• dim[ row(A) ] = dim[ col(A) ] = rank(A)

• Rank-Nullity Theorem:  rank(A) + dim[ null(A) ] = n

• How can you find basis for these spaces?

• How can you tell if a vector is in these spaces?



Special Subspaces of  ℝ𝑛:  Row Space / Column Space

Def: Let  A  be an  𝑚 × 𝑛  matrix.

1) The row space of  A  (denoted by  𝑟𝑜𝑤 𝐴 )  is the subspace of  ℝ𝑛  spanned 

by the rows of  A. 

2) The column space of  A  (denoted by  𝑐𝑜𝑙 𝐴 )  is the subspace of  ℝ𝑚    

spanned by the columns of  A.  

Ex 1: If  𝐴 =
1 2 5

−3 0 4
 , then…

𝑟𝑜𝑤 𝐴 = 𝑠𝑝𝑎𝑛 1,2,5  , −3,0,4  = 𝑐1 1,2,5 + 𝑐2 −3,0,4  | 𝑐1, 𝑐2 ∈ ℝ 

𝑐𝑜𝑙 𝐴 = 𝑠𝑝𝑎𝑛
1

−3
,

2
0

,
5
4

= 𝑐1
1

−3
+ 𝑐2

2
0

+ 𝑐3
5
4

| 𝑐1, 𝑐2, 𝑐3 ∈ ℝ 



Proof of 1:

Special Subspaces of  ℝ𝑛:  Row Space / Column Space



Discuss:

Special Subspaces of  ℝ𝑛:  Row Space / Column Space



Special Subspaces of  ℝ𝑛:  Row Space / Column Space

Recall:  Def:  Given an  𝑚 × 𝑛  matrix  𝐴.  Row reduce  A  to an echelon form 

matrix  R. Then the rank of A is the number of leading 1’s in matrix R.  



Discuss:

Special Subspaces of  ℝ𝑛:  Row Space / Column Space



Ex 2:  Compute the rank of  𝐴 =
1 2 2 −1
3 6 5 0
1 2 1 2

  and find basis for  𝑟𝑜𝑤(𝐴)  

and  𝑐𝑜𝑙(𝐴).

Special Subspaces of  ℝ𝑛:  Row Space / Column Space



Ex 3  (Ex 12 from last lecture): Find a basis and calculate the dimension of 

𝑠𝑝𝑎𝑛{ −1,2,1,0 , 2,0,3, −1 , 4,4,11, −3 , 3, −2,2, −1  }

Reducing a Set to a Basis



Ex 4  (Ex 13 from last lecture):  Find a basis of  𝑃3  in the spanning set  

1, 𝑥 + 𝑥2, 2𝑥 − 3𝑥2, 1 + 3𝑥 − 2𝑥2, 𝑥3  

Reducing a Set to a Basis



Why?

Special Subspaces of  ℝ𝑛:  Row Space / Column Space



Special Subspaces of  ℝ𝑛:  Null Space of a Matrix

Def:  Given an  𝑚 × 𝑛  matrix  𝐴 ,  the null space of  A  is 

𝑛𝑢𝑙𝑙 𝐴 =  Ԧ𝑥 ∈ ℝ𝑛 A Ԧ𝑥 = 0 }



Ex 5:  If  𝐴 =

1 3 −1
7 2 2
5

11
−4
−5

4
7

 , 

a)  show that  
−8
9

19
∈ 𝑛𝑢𝑙𝑙 𝐴

Special Subspaces of  ℝ𝑛:  Null Space of a Matrix



Ex 5:  If  𝐴 =

1 3 −1
7 2 2
5

11
−4
−5

4
7

 , 

b)  show that  
3
2

−1
∉ 𝑛𝑢𝑙𝑙 𝐴

Special Subspaces of  ℝ𝑛:  Null Space of a Matrix



Def:  Given an  𝑚 × 𝑛  matrix  𝐴 ,  the null space of  𝐴  is 

𝑛𝑢𝑙𝑙 𝐴 =  Ԧ𝑥 ∈ ℝ𝑛 A Ԧ𝑥 = 0 }

Result:  If  𝐴  is an  𝑚 × 𝑛  matrix  𝐴 ,                 is a subspace of  ℝ𝑛.     𝑛𝑢𝑙𝑙 𝐴

Proof:

Special Subspaces of  ℝ𝑛:  Null Space of a Matrix



Ex 6:  If  𝐴 =

1 3 −1
7 2 2
5

11
−4
−5

4
7

 ,  find  𝑛𝑢𝑙𝑙 𝐴 .  

Special Subspaces of  ℝ𝑛:  Null Space of a Matrix



Def:  Given an  𝑚 × 𝑛  matrix  𝐴 ,  the image space of A is 

𝑖𝑚 𝐴 =  𝐴 Ԧ𝑥 Ԧ𝑥 ∈ ℝ𝑛 }

Special Subspaces of  ℝ𝑚:  Image Space of  A



Ex 7:  If  𝐴 =

1 3 −1
7 2 2
5

11
−4
−5

4
7

 ,  find some vectors in  𝑖𝑚 𝐴 .

Columns, columns span  

Special Subspaces of  ℝ𝑚:  Image Space of  A



Result:  If  A  is an  𝑚 × 𝑛  matrix,  𝑖𝑚(𝐴)  is a subspace of  ℝ𝑛.

Proof (2 ways):

Special Subspaces of  ℝ𝑚:  Image Space of  A



Ex 8:  If  𝐴 =
1 −2 1 1

−1 2 0 1
2 −4 1 0

 , find basis for  𝑛𝑢𝑙𝑙(𝐴)  and  𝑖𝑚(𝐴) , and 

find their dimensions.   

Special Subspaces: Null Space and Image Space of  A



Def:  Let  A  be an  𝑛 × 𝑛  matrix. If there is a number  𝜆  and a non-zero  𝑛 × 1  

column matrix  𝒙  such that

𝐴𝒙 = 𝜆𝒙
Then  𝒙  is called an eigenvector of  A  and  𝜆  is called an eigenvalue of  A. 

Recall:

Special Subspaces of  ℝ𝑛:  Eigenspace of a Matrix



Def:  

If  A  be an  𝑛 × 𝑛  matrix and  𝜆  is an eigenvalue of  A ,   

the set of all eigenvectors of  A  corresponding to the eigenvalue  𝜆  together 

with the zero vector  0  is called the eigenspace of  A  corresponding to the 

eigenvalue  𝜆.  

Notes:

• Notation:  𝐸𝜆(𝐴)
• 𝐸𝜆 𝐴 = 𝑛𝑢𝑙𝑙(𝜆𝐼 − 𝐴)

Special Subspaces of  ℝ𝑛:  Eigenspace of a Matrix



Result:  

If  A  be an  𝑛 × 𝑛  matrix and  𝜆  is an eigenvalue of  A. 

Then  𝐸𝜆 𝐴 =  Ԧ𝑥 ∈ ℝ𝑛 𝐴 Ԧ𝑥 = 𝜆 Ԧ𝑥 }  is a subspace of  ℝ𝑛.

Proof (in 2 ways):

Special Subspaces of  ℝ𝑛:  Eigenspace of a Matrix



Ex 9: For the matrix                                             ,…𝐴 =
11 0 21
0 −1 0

−8 0 −15

𝐸𝜆=−1 𝐴 =  𝑠
0
1
0

+ 𝑡
−7/4

0
1

 𝑠, 𝑡 ∈ ℝ 

𝐸𝜆=−3 𝐴 =  𝑟
−3/2

0
1

 𝑟 ∈ ℝ 

Special Subspaces of  ℝ𝑛:  Eigenspace of a Matrix



The Rank-Nullity Theorem

Discuss:

3. (Rank-Nullity Theorem):  rank(A) + nullity(A) = n



More Examples from the Online Homework

Ex 9a: Consider the matrix                          .

Which of the following vectors  𝑏  are in col A ?            a) 

If  𝑏 ∈ 𝑐𝑜𝑙 𝐴 , find a vector  Ԧ𝑥  such that  𝐴 Ԧ𝑥 = 𝑏.



Ex 9b: Consider the matrix                          .

Which of the following vectors  𝑏  are in col A ?            b) 

If  𝑏 ∈ 𝑐𝑜𝑙 𝐴 , find a vector  Ԧ𝑥  such that  𝐴 Ԧ𝑥 = 𝑏.

More Examples from the Online Homework



Ex 10:

Then verify the rank-nullity theorem.

More Examples from the Online Homework



What you need to know from the book

Book reading

Section 5.1: pages 264-269 all

Section 5.4: pages 290-296 all

Problems you need to know how to do from the book

Section 5.1 #’s 12-14

Section 5.2 #’s 3, 17, 18

Section 5.4 #’s 1-15

Section 6.4 # 2
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